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Abstract

This note examines one of the most crucial questions in causal inference: “How gen-
eralizable are randomized clinical trials?” The question has received a formal treatment
recently, using a non-parametric setting which has led to a simple and general solu-
tion. I will describe this solution and several of its ramifications, and compare it to
the way researchers have attempted to tackle the problem using the language of ig-
norability. We will see that ignorability-type assumptions need to be enriched with
structural assumptions in order to capture the full spectrum of conditions that permit
generalizations, and in order to judge their plausibility in specific applications.

1 Transportability and Selection Bias

The classical problem of generalizing experimental findings from the trial sample to the
population as a whole, also known as the problem of “sample selection-bias” (Heckman,
1979; Bareinboim et al., 2014), has received renewed attention in the past decade, as more
researchers come to recognize this bias as a major threat to the validity of experimental
findings in both the health sciences (Stuart et al., 2015) and social policy making (Manski,
2013).

Since participation in a randomized trial cannot be mandated, we cannot guarantee that
the study population would be the same as the population of interest. For example, the
study population may consist of volunteers, who respond to financial and medical incentives
offered by pharmaceutical firms or experimental teams, so, the distribution of outcomes in
the study may differ substantially from the distribution of outcomes under the policy of
interest.

Another impediment to the validity of experimental finding is that the types of individuals
in the target population may change over time (Hotz et al., 2005). For example, as more
individuals become eligible for health insurance, the types of individuals seeking services
would no longer match the type of individuals that were sampled for the study (Stuart
et al., 2015). A similar change would occur as more individuals become aware of the efficacy
of the treatment. The result is an inherent disparity between the target population and the
population under study.
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The problem of generalizing across disparate populations has received a formal treatment
in (Pearl and Bareinboim, 2014) where it was labeled “transportability,” and where necessary
and sufficient conditions for valid generalization were established (see also Bareinboim and
Pearl, 2013). The problem of selection bias, though it has some unique features, can also
be viewed as a nuance of the transportability problem, thus inheriting all the theoretical
results established in (Pearl and Bareinboim, 2014) that guarantee valid generalizations. I
will describe the two problems side by side and then return to the distinction between the
type of assumptions that are needed for enabling generalizations.

The transportability problem concerns two dissimilar populations, Π and Π∗, and requires

us to estimate the average causal effect P ∗(yx) (explicitly: P ∗(yx)
∆
= P ∗(Y = y|do(X = x)) in

the target population Π∗, based on experimental studies conducted on the source population
Π.1 Formally, we assume that all differences between Π and Π∗ can be attributed to a
set of factors S that produce disparities between the two, so that P ∗(yx) = P (yx|S = 1).
The information available to us consists of two parts; first, treatment effects estimated from
experimental studies in Π and, second, observational information extracted from both Π and
Π∗. The former can be written P (y|do(x), z), where Z is set of covariates measured in the
experimental study, and the latters are written P ∗(x, y, z) = P (x, y, z|S = 1), and P (x, y, z)
respectively. In addition to this information, we are also equipped with a qualitative causal
model M, that encodes causal relationships in Π and Π∗, with the help of which we need to
identify the query P ∗(yx). Mathematically, identification amounts to transforming the query
expression

P ∗(yx) = P (y|do(x), S = 1) (1)

into a form derivable from the available information ITR, where

ITR = {P (y|do(x), z), P (x, y, z), P (x, y, z|S = 1)}. (2)

The first two components of ITR represent, respectively, the experimental and obser-
vational findings in Π, while the third component represents observational findings in Π∗.
Appendix 1 demonstrates how the query P ∗(yx) can be derived from ITR using assumptions
about the disparities between Π and Π∗ that are encoded in a graph.

The selection bias problem is slightly different. Here the aim is to estimate the average
causal effect P (yx) in the Π population, while the experimental information available to us,
ISB, comes from a preferentially selected sample, S = 1, and is given by P (y|do(x), z, S = 1).
In addition, we also assume to have access to observational information P (x, y, z|S = 1) and
P (x, y, z); the first represents observations obtained from the selected sample, S = 1, and
the second represents observation taken on the population at large. Thus, the selection bias
problem calls for transforming the query P (yx) to a form derivable from the information set:

ISB = {P (y|do(x), z, S = 1), P (x, y, z|S = 1), P (x, y, z)}. (3)

In the Appendix section, we demonstrate how transportability problems and selection
bias problems are solved using the transformations described above. At this point, however,

1We focus our discussion on the average causal effect (ATE), yet identical considerations apply to other
causal parameters, such as the effect of treatment on the treated (ETT). On the connection between ATE
and ETT, see (Shpitser and Pearl, 2009).
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it is important to note the syntactic differences between the information sets available in the
two problems. ITR is characterized by the fact that S does not appear in the conditioning part
of any do-expression, thus reflecting the fact that we do not have experimental information
from the target population Π∗. ISB on the other hand is characterized by the fact that
do-expressions are always conditioned on S, reflecting the fact that we have experimental
information only on the selected sample, S = 1.

The analysis reported in (Pearl and Bareinboim, 2014) has resulted in an algorithmic
criterion for deciding whether transportability is feasible and, when confirmed, the algorithm
produces an estimand for the desired effects (Bareinboim and Pearl, 2013). The algorithm
is complete, in the sense that, when it fails, a consistent estimate of the target effect does
not exist (unless one strengthens the assumptions encoded in M).

There are several lessons to be learned from this analysis when considering generalizing
experimental findings.

1. The graphical criteria that authorize transportability are applicable to selection bias
problems as well, provided that the graph structures for the two problems are identical.
This means that whenever a selection bias problem is characterized by a graph for
which transportability is feasible, recovery from selection bias is feasible by the same
algorithm. (The Appendix demonstrates this correspondence.)

2. The assumptions needed for transportability are more involved than the ones usually
invoked for ensuring non-confoundedness, also called “treatment assignment ignorabil-
ity.” In graphical terms, these assumptions may require several d-separation tests on
several sub-graphs. It is utterly unimaginable therefore that such assumptions could
be managed by unaided human judgment, as is normally assumed in the potential
outcomes literature (Hartman et al., 2015; Stuart et al., 2015).

3. In general, problems associated with generalizing across populations cannot be handled
by balancing disparities between distributions. A given disparity between P (x, y, z)
and P ∗(x, y, z) may demand different adjustments, depending on the location of S
in the causal structure. A simple example of this phenomenon is demonstrated in
Fig. 3(b) of (Pearl and Bareinboim, 2014) where a disparity in the average reading
ability of two cities requires two different treatments, depending on what causes the
disparity. If the disparity emanates from age differences, adjustment is necessary,
because age is likely to affect the potential outcomes. If, on the other hand the disparity
emanates from differences in educational programs, no adjustment is needed, since
education, in itself, does not modify response to treatment. Such distinctions, which
may become quite intricate in large systems, are managed automatically in the graph-
based representation.

4. In many instances, generalizations can only be achieved by conditioning on post-
treatment variables, an operation that is generally frowned upon in the potential out-
comes framework (Rosenbaum, 2002, pp. 73–74; Rubin, 2004; Sekhon, 2009) but has
become extremely useful in graphical analysis. The difference between the condition-
ing operators used in these two frameworks is reflected in the difference between the
counterfactual expression P (Yx = y|z) and the do-expression P (Y = y|do(X = x), z).
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(Pearl, 2015). The latter expression defines information that is estimable directly from
experimental studies, whereas the former invokes retrospective counterfactuals that
may or may not be estimable empirically.

In the next Section we will discuss the differences between these two conditioning opera-
tors and the benefit of leveraging post-treatment variables in problems concerning general-
ization.

2 Ignorability versus Admissibility in the Pursuit of

Generalizations

A key assumption in almost all conventional analyses of generalization (from sample-to-
population) is S-ignorability, written

Yx ⊥⊥ S|Z (4)

where Yx is the potential outcome predicated on the intervention X = x, S is a selection
indicator (with S = 1 standing for selection into the sample) and Z a set of observed
covariates. This assumption, commonly written as a difference Y1 − Y0 ⊥⊥ S|Z, appears in
Hotz et al. (2005); Cole and Stuart (2010); Tipton et al. (2014); Hartman et al. (2015), and
possibly other researchers confined to potential outcomes analysis. This assumption states
that in every stratum Z = z of the set Z, the potential outcome Yx is independent of the
factors S that may produce cross-population differences.

Given this assumption, the problem of generalizing across populations has a trivial so-
lution, which reads: If we succeed in finding a set Z of pre-treatment covariates such that
cross-population differences disappear in every stratum Z = z, then the problem can be
solved by averaging over those strata.2

Specifically, if P (yx|S = 1, Z = z) is the z-specific probability distribution of Yx in the
sample, then the distribution of Yx in the population at large is given by the post-stratification
formula

P (yx) =
∑
z

P (yx|S = 1, z)P (z) (5)

which is often referred to as re-calibration or re-weighting. Here, P (z) is the probability of
Z = z in the target population (where S = 0). Equation (5) follows from S-ignorability by
conditioning on z and, adding S = 1 to the conditioning set – a one-line proof. The proof
fails however when no covariate set Z exists that satisfies S-ignorability, in which case the
post-stratification formula will be invalid. Moreover, even when S-ignorability holds, Eq. (5)
would only be applicable if the factor P (yx|S = 1, z) is estimable in the experimental study
and this will generally not be the case when Z contains post-treatment variables (see Pearl
2015, Fig. 1).

Symmetrically, when we consider transportability problems, our query is P ∗(yx)
= P (y|do(x), S = 1) (see Eq. (1)), and S-ignorability would permit us to remove the S = 1

2Lacking a procedure for finding Z, this solution addresses only part of the problem, leaving the choice
of Z to unaided intuitive judgement.
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condition and obtain the post-stratification formula

P ∗(yx) = P (yx|S = 1) =
∑
z

P (yx|z)P (z|S = 1) (6)

Similar to Eq. (5), this formula takes a weighted average of the z-specific potential out-
come Yx over all levels of Z. Here, in syntactic contrast, the average is weighed by P (z|S = 1)
which is, again, the distribution of Z in the target population (where S = 1). As in the
case of selection bias, Eq. (6) is only useful when S-ignorability holds and when P (yx|z) is
estimable from the experimental data. Unfortunately, when Z contains post-treatment vari-
ables, the former condition will be harder to meet; we shall see that S-ignorability is rarely
satisfied in transportability problems by any set Z containing post-treatment variables.

In graphical analysis, on the other hand, the problem of generalization has been studied
using another assumption, labeled S-admissibility (Pearl and Bareinboim, 2014), which is
defined by:

P (y|do(x), z) = P (y|do(x), z, s) (7)

or, using counterfactual notation,

P (yx|zx) = P (yx|zx, sx)

It states that in every treatment regime X = x, the observed outcome Y is conditionally
independent of the selection mechanism S, given Z, all evaluated at that same treatment
regime.

Clearly, S-admissibility coincides with S-ignorability for pretreatment S and Z; the two
notions differ however for treatment-dependent selection and covariates. To witness, consider
the model of Fig. 1(a), and let X stand for education, Z for skill, S for training, and Y for
salary. S-admissibility (4) looks at those people who were assigned x years of education who

S (Training)

(Skill) (Salary)(Education)

(a)

(Salary)(Education) (Skill)

(b)

S (Test)

YX ZZ YX

Figure 1: (a) A transportability model in which a post-treatment variable Z is S-admissible
but not S-ignorable; (b) A selection-bias model in which Z is both S-admissible and S-
ignorable. Note that S is a root node in (a) and a sink node in (b), where it is a proxy of
Z. In both models, the post-stratification formula (5) is not estimable non-parametrically.

subsequently achieved skill level z, and asks whether their salary Y would depend on their
training S. The graph states that skill alone determines salary, not how it was acquired,
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therefore P (y|do(x), z)) = P (y|do(x), z, s) = P (y|z) namely, training and education have no
effect on salary, once we know z, as shown in the graph.

In contrast, S-ignorability Yx ⊥⊥ S|Z asks for the role that training plays in the salary
of those individuals who are currently at skill Z = z, had they received x years of schooling.
Surely, unless x is pathologically low, the skill levels attained by these individuals would
depend on the amount of training (S) they receive, and so would their salary Y . We thus
conclude that Yx is not independent of S given Z, namely, S-ignorability does not hold.
The condition Z = z merely selects a subpopulation for consideration but, unless individu-
als in this subpopulation possess some abnormal qualities, they should exhibit the natural
dependence of salary on training.3

The Appendix section shows that unbiased generalization across studies is indeed feasible
in scenarios like Fig. 1 (a), despite the fact that Z is not S-ignorable. This is facilitated by
the fact that Z is S-admissible, since Z separates Y from S in the graph, and leads to the
following estimand for the target effect:

P (yx|S = 1) =
∑
z

P (y|do(x), z)P (z|x, S = 1).

Note that this estimand invokes nonconventional average of the z-specific effect, weighted
by the conditional probability P (z|x) at the target population.

A similar situation occurs in sample-selection problems such as the one depicted in Fig.
1(b), where generalization from samples to populations through the post-stratification for-
mula (5) requires S-ignorability. Here, the post-stratification formula (5) is valid because Z
is S-ignorable (Z separates S from Yx in the graph), yet the formula is useles, because the
z-specific causal effect P (yx|S = 1, z) is not estimable from the experimental study.

Remarkably, the target distribution P (yx) can be estimated using a modified formula:

P (yx) =
∑
z

P (y|do(x), z, S = 1)P (z|x)

which follows from the fact that Z is S-admissible. The derivation is presented in Scenario
3 of the Appendix and demonstrates that, regardless of whether Z satisfies S-ignorability
or S-admissibility, experimental findings are not generalizable by standard procedures of
post-stratification. Rather, modified procedures need be applied, dictated by the graph
structure.

One of the reasons that S-admissibility has received greater attention in the graph-based
literature is that it has a very simple graphical representation: Z and X should separate Y
from S in a mutilated graph, from which all arrows entering X have been removed. Such a
graph depicts conditional independencies among observed variables in the population under
experimental conditions, i.e., where X is randomized.

3To show explicitly that S-ignorability does not hold in Fig. 1(a), one can examine a linear model and
use Eq. (11.28) of (Pearl, 2009, p. 389) to show that

E[Yx|Z = z, S = s] = ax + bz + cs

with non-zero c.
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S-ignorability requires a more elaborate graphical interpretation; it can be verified from
either twin networks (Pearl, 2009, pp. 213-4) or from counterfactually augmented graphs
(Pearl, 2009, p. 341). Using either representation, it is easy to see that S-ignorability is rarely
satisfied in problems in which Z is a post-treatment variable. This is because, whenever S
is an ancestor of Z, or a proxy of such ancestor, Z cannot separate Yx from S.

As noted in (Keiding, 1987) the re-calibration formula (5) goes back to 18th century de-
mographers (Dale, 1777; Tetens, 1786) facing the task of predicting overall mortality (across
populations) from age-specific data. Their reasoning was probably as follows: If the source
and target populations differ in distribution by a set of attributes Z, then to correct for
these differences we need to weight samples by a factor that would restore similarity to
the two distributions. Some researchers view Eq. (5) as a version of Horvitz and Thomp-
son (1952) post-stratification method of estimating the mean of a super-population from
un-representative stratified samples. The essential difference between survey sampling cali-
bration and the calibration required in Eq. (5) is that the calibrating covariates Z are not
just any set by which the distributions differ; they must satisfy the S-ignorability (or ad-
missibility) condition, which is a causal, not a statistical condition and is not discernible
therefore from distributions over observed variables. In other words, the re-calibration for-
mula should depend on disparities between the causal models of the two populations, not
merely on distributional disparities; we discussed this point in Section 1 (item 3) and it is
also demonstrated in the Appendix (Fig. 2(a)).

While S-ignorability and S-admissibility are both sufficient for re-calibrating pre-treatment
covariates Z, S-admissibility goes further and discovers generalizations that leverage both
pre-treatment and post-treatment variables. The three examples discussed in the Appendix
demonstrate this point.

Conclusions

1. Many opportunities for generalization are opened up through the use of post-treatment
variables. These opportunities remain inaccessible to ignorability-based analysis, partly
because S-ignorability does not always hold for such variables but, mainly, because ig-
norability analysis requires information in the form of z-specific counterfactuals, which
is often not estimable from experimental studies.

2. Most of these opportunities have been chartered through the completeness results for
transportability (Bareinboim et al., 2014), others can be revealed by simple derivations
in do-calculus as shown in the Appendix.

3. There is still the issue of assisting researchers in judging whether S-ignorability (or
S-admissibility) is plausible in any given application. Graphs excel in this dimension
because they match the format in which people store scientific knowledge. Researchers
who insist on discerning S-ignorability by appealing to human intuition do so at the
peril of missing opportunities for generalization, or producing biased effect estimates.
Readers can appreciate the magnitude of these perils by examining the simple examples
presented in Fig. 2 of the Appendix; discerning S-ignorability in any one of the three
scenarios is a formidable judgmental task if unaided by graphs.
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Appendix

To each of the models represented in Fig. 2 we will provide a scenario, a problem specification
and a derivation of the target estimand.

YX Z

= 1S = 1S

= 1S

Z YX YX Z

(b) (c)(a)

L

Figure 2: (a) Generalizable transportability problem in which Z is S-admissible but S-
ignorability does not hold. (b) Generalizable selection-bias problem in which Z is S-
admissible but S-ignorability does not hold. (c) Generalizable selection-bias problem in
which S-admissibility and S-ignorability both hold, yet post-stratification (Eq. (5)) fails to
estimate the target treatment effect P (yx).

Scenario 1 (Figure 2(a)):
X = Treatment, Y = outcome, Z = a bio-marker believed to mediate between treatment
and outcome. S = a factor (say diet) that makes the effect of X on Z different in the two
populations, Π and Π∗. The curved dashed arch between X and Y represents the presence of
unobserved confounders.

Problem formulation:
Needed:

P ∗(yx) = P (y|do(x), S = 1)

Information set available:

ITR = {P (y|do(x), z), P (x, y, z|S = 1), P (x, y, z)}.

Assumptions: S-admissibility (deduced from Fig. 2(a))

P (y|do(x), z) = P (y|do(x), z, s)
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Derivation:

P ∗(yx) = P (y|do(x), S = 1)

=
∑
z

P (y|do(x), S = 1, z)P (z|do(x), S = 1)

=
∑
z

P (y|do(x), z)P (z|do(x), S = 1)

=
∑
z

P (y|do(x), z)P (z|x, S = 1)

Each step in this derivation follows from probability theory and the assumption of S-
admissibility which permits us to remove the factor S = 1 from the first factor of the second
line. The result is an estimand in which the condition S = 1 does not appear in any
do-expression, hence it is estimable from ITR.

Scenario 2 (Figure 2(b))
This is a selection-bias version of the transportability problem presented in Scenario 1. As-
sume variable L stands for “location” and that selection for the study prefers subjects from
one location over another (Hotz et al., 2005). The task is to estimate the average causal
effect over the entire population.

Problem formulation:
Needed:

P (yx) = P (y|do(x))

Information set available:

ISB = {P (y|do(x), z, S = 1), P (x, y, z|S = 1), P (x, y, z)}.

Assumptions: S-admissibility (deduced from the model of Fig. 2(b))

P (y|do(x), z) = P (y|do(x), z, s)

Derivation:

P (yx) = P (y|do(x))

=
∑
z

P (y|do(x), z)P (z|do(x))

=
∑
z

P (y|do(x), z, S = 1)P (z|do(x))

=
∑
z

P (y|do(x), z, S = 1)P (z|x)

The first term in the sum is estimable from the biased experimental study while the
second from the target population.
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Scenario 3 (Figure 2(c))
This is another selection-bias version of the problem presented in Scenario 1. Assume Z
represents a post-treatment complication and, naturally, people with complications are more
likely to enter the database.

Problem formulation:
The problem is identical to that of Scenario 2 with the exception that now both S-

admissibility and S-ignorability hold for variable Z. The former can be seen from its graph-
ical definition, since Z and X separate Y from S, and the latter by noting the Z separate S
from all exogenous factors that affect Y .
Derivation:
The same as in Scenario 2. Again, we see that the final estimand calls for averaging the
z-specific effect in the experiment over all strata of Z, but now the average is weighted by
the conditional probability P (z|x) instead of the marginal P (z) that appears in Eq. (5).

Remark 1 Note that, in Scenario 2, if variable L is observable, then the selection bias
problem can be solved by re-calibration over L, since L is treatment-independent and satisfies
S-ignorability (and S-admissibility). It is only when L is unobserved that we must resort to
Z, a post treatment variable that does not satisfy S-ignorability.
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